FaIR: Finite Amplitude Impulse Response simple climate model

FaIR is a reduced-complexity climate model useful for scenario assessment and idealised climate runs.

Contents

Indices and tables

References

Cummins2020

Cummins, D. P., Stephenson, D. B., & Stott, P. A. (2020). Optimal Estimation of Stochastic Energy Balance Model Parameters, Journal of Climate, 33(18), 7909-7926.

Etminan2016

Etminan, M., Myhre, G., Highwood, E.J., Shine, K.P., (2016). Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing, Geophysical Research Letters, 43, 12,614–12,623

Geoffroy2013

Geoffroy, O., Saint-Martin, D., Bellon, G., Voldoire, A., Olivié, D. J. L., & Tytéca, S. (2013). Transient Climate Response in a Two- Layer Energy-Balance Model. Part II: Representation of the Efficacy of Deep-Ocean Heat Uptake and Validation for CMIP5 AOGCMs, Journal of Climate, 26(6), 1859-1876

Leach2021

Leach, N. J., Jenkins, S., Nicholls, Z., Smith, C. J., Lynch, J., Cain, M., Walsh, T., Wu, B., Tsutsui, J., and Allen, M. R. (2021). FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration. Geoscientific Model Development, 14, 3007–3036

Meinshausen2020

Meinshausen, M., Nicholls, Z.R.J., Lewis, J., Gidden, M.J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J.G., Daniel, J.S., John, A., Krummel, P.B., Luderer, G., Meinshausen, N., Montzka, S.A., Rayner, P.J., Reimann, S., Smith, S.J., van den Berg, M., Velders, G.J.M., Vollmer, M.K., Wang, R.H.J. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500, Geoscientific Model Development, 13, 3571–3605.

Millar2017

Millar, R. J., Nicholls, Z. R., Friedlingstein, P., and Allen, M. R. (2017) A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmospheric Chemistry and Physics, 17, 7213–7228.

Myhre1998

Myhre, G., Highwood, E.J., Shine, K. Stordal, F. (1998). New estimates or radiative forcing due to well mixed greenhouse gases. Geophysical Research Letters, 25 (14), 2715-2718.

Skeie2020

Skeie, R.B., Myhre, G., Hodnebrog, Ø., Cameron-Smith, P.J., Deushi, M., Hegglin, M.I., Horowitz, L.W., Kramer, R.J., Michou, M., Mills, M.J., Olivié, D.J., Connor, F.M., Paynter, D., Samset, B.H., Sellar, A., Shindell, D., Takemura, T., Tilmes, S., Wu, T., 2020. Historical total ozone radiative forcing derived from CMIP6 simulations, npj Climate and Atmospheric Science, 3, 1–10.

Stevens2015

Stevens, B. (2015). Rethinking the Lower Bound on Aerosol Radiative Forcing, Journal of Climate, 28(12), 4794-4819.

Thornhill2021a

Thornhill, G.D., Collins, W.J., Kramer, R.J., Olivié, D., Skeie, R.B., O’Connor, F.M., Abraham, N.L., Checa-Garcia, R., Bauer, S.E., Deushi, M., Emmons, L.K., Forster, P.M., Horowitz, L.W., Johnson, B., Keeble, J., Lamarque, J.-F., Michou, M., Mills, M.J., Mulcahy, J.P., Myhre, G., Nabat, P., Naik, V., Oshima, N., Schulz, M., Smith, C.J., Takemura, T., Tilmes, S., Wu, T., Zeng, G., Zhang, J. (2021). Effective radiative forcing from emissions of reactive gases and aerosols – a multi-model comparison, Atmospheric Chemistry and Physics, 21, 853–874

Tsutsui2017

Tsutsui (2017): Quantification of temperature response to CO2 forcing in atmosphere–ocean general circulation models. Climatic Change, 140, 287–305